- Home
- Standard 11
- Mathematics
यदि ${z_1} = a + ib$ व ${z_2} = c + id$ सम्मिश्र संख्यायें इस प्रकार हैं कि $|{z_1}| = |{z_2}| = 1$ व $R({z_1}\overline {{z_2}} ) = 0,$ तो सम्मिश्र संख्याओं का युग्म ${w_1} = a + ic$ व ${w_2} = b + id$ संतुष्ट करता है
$|{w_1}| = 1$
$|{w_2}| = 1$
$R({w_1}\overline {{w_2}} ) = 0,$
उपरोक्त सभी
Solution
(d) $|{z_1}| = |{z_2}| = 1$,
${z_1} = \cos {\theta _1} + i\sin {\theta _1},{z_2} = \cos {\theta _2} + i\sin {\theta _2}$
जहाँ ${\theta _1} = arg({z_1})$ व ${\theta _2} = arg({z_2})$
तथा ${z_1} = a + ib$ and ${z_2} = c + id.$
अत: $a = \cos {\theta _1}$,$b = \sin {\theta _1},c = \cos {\theta _2}$ तथा
$d = \sin {\theta _2}$
$R({z_1}{\overline z _2}) = 0$
$R[(\cos {\theta _1} + i\sin {\theta _1})(\cos {\theta _2} – i\sin {\theta _2})] = 0$
$R[(\cos ({\theta _1} – {\theta _2}) + i\sin ({\theta _1} – {\theta _2})] = 0$
$\cos ({\theta _1} – {\theta _2}) = 0$== > ${\theta _1} – {\theta _2} = \frac{\pi }{2}$
==>${\theta _1} = {\theta _2} + \frac{\pi }{2}$
अब ${w_1} = a + ic = \cos {\theta _1} + i\cos {\theta _2}$$ = \cos {\theta _1} + i\sin {\theta _1}$
$|{w_1}| = 1$
इसी प्रकार, $|{w_2}| = 1$
अब ${w_1}{\overline w _2} = (\cos {\theta _1} + i\sin {\theta _1})(\cos {\theta _2} – i\sin {\theta _2})$
$ = \cos ({\theta _1} – {\theta _2}) + i\sin ({\theta _1} – {\theta _2})$
==>$|{w_1}{\overline w _2}| = 1$
अन्तत: $R({\overline w _1}{w_2}) = R({w_2}{\overline w _1})$
$ = R[(\cos {\theta _2} + i\sin {\theta _2})(\cos {\theta _1} – i\sin {\theta _1})]$
$ = R[\cos ({\theta _2} – {\theta _1}) + i\sin ({\theta _2} – {\theta _1})]$
$ = \cos ({\theta _2} – {\theta _1}) = \cos \left( {\frac{{ – \pi }}{2}} \right) = 0$