यदि ${z_1} = a + ib$ व ${z_2} = c + id$ सम्मिश्र संख्यायें इस प्रकार हैं कि $|{z_1}| = |{z_2}| = 1$ व $R({z_1}\overline {{z_2}} ) = 0,$ तो सम्मिश्र संख्याओं का युग्म ${w_1} = a + ic$ व ${w_2} = b + id$ संतुष्ट करता है
$|{w_1}| = 1$
$|{w_2}| = 1$
$R({w_1}\overline {{w_2}} ) = 0,$
उपरोक्त सभी
कोई भी दो सम्मिश्र संख्याओं ${z_1},{z_2}$के लिये $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ तब
समीकरण $|1-i|^{x}=2^{x}$ के शून्येत्तर पूर्णाक मूलों की संख्या ज्ञात कीजिए।
माना एक सम्मिश्र संख्या $z$ इस प्रकार है कि $| z |+ z =3+ i ($ जहाँ $i =\sqrt{-1})$, तो $| z |$ बराबर है
माना $z,w$ सम्मिश्र संख्यायें हैं जबकि $\overline z + i\overline w = 0$ और $arg\,\,zw = \pi $, तब $arg\ z$ बराबर है
$|2z - 1| + |3z - 2|$का न्यूनतम मान होगा