The solution of the equation $|z| - z = 1 + 2i$ is

  • A

    $2 - \frac{3}{2}i$

  • B

    $\frac{3}{2} + 2i$

  • C

    $\frac{3}{2} - 2i$

  • D

    $ - 2 + \frac{3}{2}i$

Similar Questions

Let $z_1, z_2 \in C$ such that $| z_1 + z_2 |= \sqrt 3$ and $|z_1| = |z_2| = 1,$ then the value of $|z_1 - z_2|$ is

If $z =2+3 i$, then $z ^{5}+(\overline{ z })^{5}$ is equal to.

  • [JEE MAIN 2022]

If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha  \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is

  • [JEE MAIN 2019]

Let $z$ be complex number such that $\left|\frac{z-i}{z+2 i}\right|=1$ and $|z|=\frac{5}{2} \cdot$ Then the value of $|z+3 i|$ is 

  • [JEE MAIN 2020]

The modulus and amplitude of $\frac{{1 + 2i}}{{1 - {{(1 - i)}^2}}}$ are