- Home
- Standard 11
- Mathematics
The solution of the equation $|z| - z = 1 + 2i$ is
$2 - \frac{3}{2}i$
$\frac{3}{2} + 2i$
$\frac{3}{2} - 2i$
$ - 2 + \frac{3}{2}i$
Solution
(c)$|z| – z = 1 + 2i$
Let $z = x + iy$, therefore $|x + iy| – (x + iy) = 1 + 2i$
Equating real and imaginary parts, we get
$\sqrt {{x^2} + {y^2}} – x = 1$and $y = – 2$==>$x = \frac{3}{2}$
Hence complex number $z = \frac{3}{2} – 2i$.
Trick : Since $\left| {\frac{3}{2} – 2i} \right| – \left( {\frac{3}{2} – 2i} \right)$
$ = \sqrt {\frac{9}{4} + 4} – \frac{3}{2} + 2i = \frac{5}{2} – \frac{3}{2} + 2i = 1 + 2i$
Similar Questions
Let $z$ be complex number satisfying $|z|^3+2 z^2+4 z-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.
Match each entry in List-$I$ to the correct entries in List-$II$.
List-$I$ | List-$II$ |
($P$) $|z|^2$ is equal to | ($1$) $12$ |
($Q$) $|z-\bar{z}|^2$ is equal to | ($2$) $4$ |
($R$) $|z|^2+|z+\bar{z}|^2$ is equal to | ($3$) $8$ |
($S$) $|z+1|^2$ is equal to | ($4$) $10$ |
($5$) $7$ |
The correct option is: