If $a,\,b,\,c$ are in $A.P.$, then $(a + 2b - c)$ $(2b + c - a)$ $(c + a - b)$ equals

  • A

    $\frac{1}{2}abc$

  • B

    $abc$

  • C

    $2\ abc$

  • D

    $4\ abc$

Similar Questions

If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to

  • [AIEEE 2012]

Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :

  • [JEE MAIN 2021]

If the sum of the series $2 + 5 + 8 + 11............$ is $60100$, then the number of terms are

The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is

  • [JEE MAIN 2022]

Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$