If the angles of a quadrilateral are in $A.P.$ whose common difference is ${10^o}$, then the angles of the quadrilateral are
${65^o},\,{85^o},\,{95^o},\,{105^o}$
${75^o},\,{85^o},\,{95^o},\,{105^o}$
${65^o},\,{75^o},\,{85^o},\,{95^o}$
${65^o},\,{95^o},\,{105^o},\,{115^o}$
If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then
If the roots of the equation ${x^3} - 12{x^2} + 39x - 28 = 0$ are in $A.P.$, then their common difference will be
If $\frac{{3 + 5 + 7 + ..........{\rm{to}}\;n\;{\rm{terms}}}}{{5 + 8 + 11 + .........{\rm{to}}\;10\;{\rm{terms}}}} = 7$, then the value of $n$ is
If $1,\,\,{\log _9}({3^{1 - x}} + 2),\,\,{\log _3}({4.3^x} - 1)$ are in $A.P.$ then $x$ equals
Let $a_1, a_2, \ldots \ldots, a_n$ be in A.P. If $a_5=2 a_3$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to $..........$.