If the angles of a quadrilateral are in $A.P.$ whose common difference is ${10^o}$, then the angles of the quadrilateral are
${65^o},\,{85^o},\,{95^o},\,{105^o}$
${75^o},\,{85^o},\,{95^o},\,{105^o}$
${65^o},\,{75^o},\,{85^o},\,{95^o}$
${65^o},\,{95^o},\,{105^o},\,{115^o}$
The number of terms common to the two A.P.'s $3,7,11, \ldots ., 407$ and $2,9,16, \ldots . .709$ is
Suppose $a_{1}, a_{2}, \ldots, a_{ n }, \ldots$ be an arithmetic progression of natural numbers. If the ratio of the sum of the first five terms of the sum of first nine terms of the progression is $5: 17$ and $110< a_{15} < 120$ , then the sum of the first ten terms of the progression is equal to -
If the sum of three consecutive terms of an $A.P.$ is $51$ and the product of last and first term is $273$, then the numbers are
The sums of $n$ terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6 .$ Find the ratio of their $18^{\text {th }}$ terms.
If the sum of the first $n$ terms of the series $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ is $435\sqrt 3 $ , then $n$ equals