Let $S_n$ denote the sum of first $n$ terms an arithmetic progression. If $S_{20}=790$ and $S_{10}=145$, then $S_{15}-$ $S_5$ is:
$395$
$390$
$405$
$410$
If the first term of an $A.P.$ is $3$ and the sum of its first $25$ terms is equal to the sum of its next $15$ terms, then the common difference of this $A.P.$ is :
Let ${S_1},{S_2},......,{S_{101}}$ be the consecutive terms of an $A.P$ . If $\frac{1}{{{S_1}{S_2}}} + \frac{1}{{{S_2}{S_3}}} + .... + \frac{1}{{{S_{100}}{S_{101}}}} = \frac{1}{6}$ and ${S_1} + {S_{101}} = 50$ , then $\left| {{S_1} - {S_{101}}} \right|$ is equal to
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic progression. If $\mathrm{S}_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $S_{15}-S_5$ is equal to:
Let $a , b , c$ be in arithmetic progression. Let the centroid of the triangle with vertices $( a , c ),(2, b)$ and $(a, b)$ be $\left(\frac{10}{3}, \frac{7}{3}\right)$. If $\alpha, \beta$ are the roots of the equation $ax ^{2}+ bx +1=0$, then the value of $\alpha^{2}+\beta^{2}-\alpha \beta$ is ....... .
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=(-1)^{n-1} 5^{n+1}$