8. Sequences and Series
hard

If the range of $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite $G.P.$, whose first term is $64$ and the common ratio is $\frac{\alpha}{\beta}$, is equal to...........

A

$96$

B

$46$

C

$27$

D

$52$

(JEE MAIN-2024)

Solution

$ f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta} $

$ f(\theta)=1+\frac{2 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta} $

$ f(\theta)=\frac{2 \cos ^2 \theta}{\cos ^4 \theta-\cos ^2 \theta+1}+1 $

$ f(\theta)=\frac{2}{\cos ^2 \theta+\sec ^2 \theta-1}+1 $

$ \left.f(\theta)\right|_{\min .}=1 $

$ f(\theta)_{\max }=3 $

$ S=\frac{64}{1-1 / 3}=96$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.