If the range of $f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite $G.P.$, whose first term is $64$ and the common ratio is $\frac{\alpha}{\beta}$, is equal to...........

  • [JEE MAIN 2024]
  • A

    $96$

  • B

    $46$

  • C

    $27$

  • D

    $52$

Similar Questions

If ${(p + q)^{th}}$ term of a $G.P.$ be $m$ and ${(p - q)^{th}}$ term be $n$, then the ${p^{th}}$ term will be

The value of ${a^{{{\log }_b}x}}$, where $a = 0.2,\;b = \sqrt 5 ,\;x = \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + .........$to $\infty $ is

If in a $G.P.$ of $64$ terms, the sum of all the terms is $7$ times the sum of the odd terms of the $G.P,$ then the common ratio of the $G.P$. is equal to

  • [JEE MAIN 2024]

Show that the products of the corresponding terms of the sequences $a,$ $ar,$ $a r^{2},$ $......a r^{n-1}$ and $A, A R, A R^{2}, \ldots, A R^{n-1}$ form a $G .P.,$ and find the common ratio.

The sum to infinity of the progression $9 - 3 + 1 - \frac{1}{3} + .....$ is