Gujarati
8. Sequences and Series
medium

If $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + .......\infty $,  then the value of $r$ will be

A

$A{(1 - A)^z}$

B

${\left( {\frac{{A - 1}}{A}} \right)^{1/z}}$

C

${\left( {\frac{1}{A} - 1} \right)^{1/z}}$

D

$A{(1 - A)^{1/z}}$

Solution

(b) $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + ……..\infty $

$A = 1 + [{r^z} + {r^{2z}} + {r^{3z}} + ……..\infty ]$

We know that sum of infinite $G.P.$ is

${S_\infty } = \frac{a}{{1 – r}}( – 1 < r < 1)$

Therefore, $A = 1 + \left[ {\frac{{{r^z}}}{{1 – {r^z}}}} \right]$

$\Rightarrow A = \frac{{1 – {r^z} + {r^z}}}{{1 – {r^z}}}$

$\therefore $ $A = \frac{1}{{1 – {r^z}}}$

$\Rightarrow 1 – {r^z} = \frac{1}{A} $

$\Rightarrow {r^z} = \frac{{A – 1}}{A}$

Hence $r = {\left[ {\frac{{A – 1}}{A}} \right]^{1/z}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.