- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
यदि $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + .......\infty $, तो $r$ का मान होगा
A
$A{(1 - A)^z}$
B
${\left( {\frac{{A - 1}}{A}} \right)^{1/z}}$
C
${\left( {\frac{1}{A} - 1} \right)^{1/z}}$
D
$A{(1 - A)^{1/z}}$
Solution
(b) $A = 1 + {r^z} + {r^{2z}} + {r^{3z}} + ……..\infty $
$A = 1 + [{r^z} + {r^{2z}} + {r^{3z}} + ……..\infty ]$
हम जानते हैं, गुणोत्तर श्रेणी के अनन्त पदों का योगफल
${S_\infty } = \frac{a}{{1 – r}}$, $( – 1 < r < 1)$
अत:, $A = 1 + \left[ {\frac{{{r^z}}}{{1 – {r^z}}}} \right]$
$\Rightarrow A = \frac{{1 – {r^z} + {r^z}}}{{1 – {r^z}}}$
$\therefore $ $A = \frac{1}{{1 – {r^z}}}$
$\Rightarrow 1 – {r^z} =\frac{1}{A}$
$\Rightarrow {r^z} = \frac{{A – 1}}{A}$
अत: $r = {\left[ {\frac{{A – 1}}{A}} \right]^{1/z}}$.
Standard 11
Mathematics