- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
If $a,\;b,\;c$ are in $A.P.$, then ${10^{ax + 10}},\;{10^{bx + 10}},\;{10^{cx + 10}}$ will be in
A
$A.P.$
B
$G.P.$ only when $x > 0$
C
$G.P.$ for all values of $x$
D
$G.P.$ for $x < 0$
Solution
(c) $a,\;b,\;c$are in $A.P.$
$ \Rightarrow $$2b = a + c$
Now ${({10^{bx + 10}})^2} = ({10^{ax + 10}}.\;{10^{cx + 10}})$
$ \Rightarrow $ ${10^{2(bx + 10)}} = {10^{ax + cx + 20}}$
$ \Rightarrow $ $2(bx + 10) = ax + cx + 20,\;\rlap{–} V\,x$
$ \Rightarrow $ $2b = a + c\;\;i.e.\;\;a,\;b,\;c$ are in $A.P.$
Hence these are in $G.P.$ $\forall x$.
Note : As we know if $a,\;b,\;c$ are in $A.P.$,
then ${x^{an + r}},\;{x^{bn + r}},\;{x^{cn + r}}$ are in $G.P. $ for every $n$ and $r$.
Standard 11
Mathematics