The sum of the first $n$ terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .........$ is
${2^n} - n - 1$
$1 - {2^{ - n}}$
$n + {2^{ - n}} - 1$
${2^n} - 1$
The sum of first four terms of a geometric progression $(G.P.)$ is $\frac{65}{12}$ and the sum of their respective reciprocals is $\frac{65}{18} .$ If the product of first three terms of the $G.P.$ is $1,$ and the third term is $\alpha$, then $2 \alpha$ is ....... .
In a increasing geometric series, the sum of the second and the sixth term is $\frac{25}{2}$ and the product of the third and fifth term is $25 .$ Then, the sum of $4^{\text {th }}, 6^{\text {th }}$ and $8^{\text {th }}$ terms is equal to
The sum of an infinite geometric series with positive terms is $3$ and the sum of the cubes of its terms is $\frac {27}{19}$. Then the common ratio of this series is
Let $a, b, c, d$ and $p$ be any non zero distinct real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+ cd ) p +\left( b ^{2}+ c ^{2}+ d ^{2}\right)=0 .$ Then
The interior angle of a $'n$' sided convex polygon are in $G.P$.. The smallest angle is $1^o $ and common ratio is $2^o $ then number of possible values of $'n'$ is