The sum of the first $n$ terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .........$ is
${2^n} - n - 1$
$1 - {2^{ - n}}$
$n + {2^{ - n}} - 1$
${2^n} - 1$
If $n$ geometric means be inserted between $a$ and $b$ then the ${n^{th}}$ geometric mean will be
Show that the products of the corresponding terms of the sequences $a,$ $ar,$ $a r^{2},$ $......a r^{n-1}$ and $A, A R, A R^{2}, \ldots, A R^{n-1}$ form a $G .P.,$ and find the common ratio.
If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then
The first term of an infinite geometric progression is $x$ and its sum is $5$. Then
Let $\mathrm{a}$ and $\mathrm{b}$ be be two distinct positive real numbers. Let $11^{\text {th }}$ term of a $GP$, whose first term is $a$ and third term is $b$, is equal to $p^{\text {th }}$ term of another $GP$, whose first term is $a$ and fifth term is $b$. Then $\mathrm{p}$ is equal to