8. Sequences and Series
normal

If $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\left( {x \ne 0} \right)$ then $a$, $b$, $c$, $d$ are in

A

$A.P.$

B

$G.P.$

C

$H.P.$

D

None

Solution

$\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}=K$

$\frac{b}{a} x=\frac{c}{b} x=\frac{d}{c} x$

$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$

$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \longrightarrow \mathrm{G} \cdot \mathrm{p}.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.