- Home
- Standard 11
- Mathematics
8. Sequences and Series
normal
If $\frac{{a + bx}}{{a - bx}} = \frac{{b + cx}}{{b - cx}} = \frac{{c + dx}}{{c - dx}},\left( {x \ne 0} \right)$ then $a$, $b$, $c$, $d$ are in
A
$A.P.$
B
$G.P.$
C
$H.P.$
D
None
Solution
$\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}=K$
$\frac{b}{a} x=\frac{c}{b} x=\frac{d}{c} x$
$\frac{b}{a}=\frac{c}{b}=\frac{d}{c}$
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \longrightarrow \mathrm{G} \cdot \mathrm{p}.$
Standard 11
Mathematics