- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
If $p,\;q,\;r$ are in one geometric progression and $a,\;b,\;c$ in another geometric progression, then $cp,\;bq,\;ar$ are in
A
$A.P.$
B
$H.P.$
C
$G.P.$
D
None of these
Solution
(c) As $p,\;q,\;r$ are in $G.P.$
$\therefore $${q^2} = pr$…..$(i)$
and $a,\;b,\;c$ are also in $G.P.$
$\therefore $${b^2} = ac$…..$(ii)$
From $(i)$ and $(ii),$ ${q^2}{b^2} = (pr)(ac)$
$ \Rightarrow $${(bq)^2} = (cp)\;.\;(ar)$
Hence $cp,\;bq,\;ar$ are in $G.P.$
Standard 11
Mathematics
Similar Questions
medium