Gujarati
8. Sequences and Series
medium

If $(y - x),\,\,2(y - a)$ and $(y - z)$ are in $H.P.$, then $x - a,$ $y - a,$ $z - a$ are in

A

$A.P.$

B

$G.P.$

C

$H.P.$

D

None of these

Solution

(b) $(y – x),\,2(y – a),(y – z)$ are in $H.P.$

==> $\frac{1}{{y – x}},\frac{1}{{2(y – a)}},\frac{1}{{y – z}}$ are in $A.P.$

==> $\frac{1}{{2(y – a)}} – \frac{1}{{(y – x)}} = \frac{1}{{y – z}} – \frac{1}{{2(y – a)}}$

==> $\frac{{y – x – 2y + 2a}}{{(y – x)}} = \frac{{2y – 2a – y + z}}{{(y – a) – (z – a)}}$

$ \Rightarrow \frac{{ – x – y + 2a}}{{(y – x)}} = \frac{{y + z – 2a}}{{(y – z)}}$

$ \Rightarrow \frac{{(x – a) + (y – a)}}{{(x – a) – (y – a)}} = \frac{{(y – a) + (z – a)}}{{(y – a) – (z – a)}}$

==> $\frac{{(x – a)}}{{(y – a)}} = \frac{{(y – a)}}{{(z – a)}}$

$(x – a),(y – a),(z – a)$ are in $G.P.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.