The sum of some terms of $G.P.$ is $315$ whose first term and the common ratio are $5$ and $2,$ respectively. Find the last term and the number of terms.
Let the sum of n terms of the $G.P.$ be $315$
It is known that, $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
It is given that the first term $a$ is $5$ and common ratio $r$ is $2$
$\therefore 315=\frac{5\left(2^{n}-1\right)}{2-1}$
$\Rightarrow 2^{n}-1=63$
$\Rightarrow 2^{n}=64=(2)^{6}$
$\Rightarrow n=6$
$\therefore$ Last term of the $G.P.$ $=6^{\text {th }}$ term $=a r^{6-1}=(5)(2)^{5}=(5)(32)$
$=160$
Thus, the last term of the $G.P.$ is $160 .$
if $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , then $x$ is equal to
Given a $G.P.$ with $a=729$ and $7^{\text {th }}$ term $64,$ determine $S_{7}$
Let ${A_n} = \left( {\frac{3}{4}} \right) - {\left( {\frac{3}{4}} \right)^2} + {\left( {\frac{3}{4}} \right)^3} - ..... + {\left( { - 1} \right)^{n - 1}}{\left( {\frac{3}{4}} \right)^n}$ and $B_n \,= 1 - A_n$ . Then, the least odd natural number $p$ , so that ${B_n} > {A_n}$, for all $n \geq p$ is
The sum to infinity of the progression $9 - 3 + 1 - \frac{1}{3} + .....$ is
If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then