4-2.Quadratic Equations and Inequations
medium

જો $x,\;y,\;z$ એ વાસ્તવિક અને ભિન્ન હોય તો $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ એ હંમેશા . . .

A

અનૃણ

B

ધન નથી.

C

શૂન્ય

D

એકપણ નહી.

(IIT-1979)

Solution

(a) $x,y,z \in R$and distinct.

Now, $u = {x^2} + 4{y^2} + 9{z^2} – 6yz – 3zx – 2xy$

$ = \frac{1}{2}(2{x^2} + 8{y^2} + 18{z^2} – 12yz – 6zx – 4xy)$

$ = \frac{1}{2}\left\{ {{x^2} – 4xy + 4{y^2}) + ({x^2} – 6zx + 9{z^2}) + (4{y^2} – 12yz + 9{z^2})} \right\}$

$ = \frac{1}{2}\left\{ {{{(x – 2y)}^2} + {{(x – 3z)}^2} + {{(2y – 3z)}^2}} \right\}$

Since it is sum of squares. So $u$ is always non- negative.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.