If $x,\;y,\;z$ are real and distinct, then $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ is always

  • [IIT 1979]
  • A

    Non-negative

  • B

    Non-positive

  • C

    Zero

  • D

    None of these

Similar Questions

Let $x_1,x_2,x_3 \in R-\{0\} $ ,$x_1 + x_2 + x_3\neq 0$ and $\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}=\frac{1}{x_1+x_2+x_3}$, then  $\frac{1}{{x^n}_1+{x^n}_2+{x^n}_3} =\frac{1}{{x^n}_1}+\frac{1}{{x^n}_2}+\frac{1}{{x^n}_3}$ holds good for

For the equation $|{x^2}| + |x| - 6 = 0$, the roots are

A real root of the equation ${\log _4}\{ {\log _2}(\sqrt {x + 8} - \sqrt x )\} = 0$ is

The sum of the solutions of the equation $\left| {\sqrt x  - 2} \right| + \sqrt x \left( {\sqrt x  - 4} \right) + 2 = 0\left( {x > 0} \right)$ is equal to

  • [JEE MAIN 2019]

The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is