यदि $x,\;y,\;z$ वास्तविक व भिन्न हों, तो $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - 2xy$हमेशा होगा
अऋणात्मक
अधनात्मक
शून्य
इनमें से कोई नहीं
समीकरण
$x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0$
के मूलों का योग है
यदि $2+3 i$, समीकरण $2 x^{3}-9 x^{2}+ k x-13=0$, $k \in R$ का एक मूल है, तो इस समीकरण का वास्तविक मूल
यदि $2 + i$ समीकरण ${x^3} - 5{x^2} + 9x - 5 = 0$ का एक मूल हो तो अन्य मूल होंगे
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।
समीकरण $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ के वास्तविक मूलों की संख्या है