If $x$ be real, the least value of ${x^2} - 6x + 10$ is
$1$
$2$
$3$
$10$
The number of solutions of $\frac{{\log 5 + \log ({x^2} + 1)}}{{\log (x - 2)}} = 2$ is
The number of solutions, of the equation $\mathrm{e}^{\sin x}-2 e^{-\sin x}=2$ is
The sum of all real values of $x$ satisfying the equation ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ is ;
If the quadratic equation ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ has $2$ integral roots, then sum of all possible values of $\theta $ in interval $(0, 2\pi )$ is $k\pi $, then $k$ equals
Suppose that $x$ and $y$ are positive number with $xy = \frac{1}{9};\,x\left( {y + 1} \right) = \frac{7}{9};\,y\left( {x + 1} \right) = \frac{5}{{18}}$ . The value of $(x + 1) (y + 1)$ equals