If $x$ be real, the least value of ${x^2} - 6x + 10$ is
$1$
$2$
$3$
$10$
If the equation $\frac{{{x^2} + 5}}{2} = x - 2\cos \left( {ax + b} \right)$ has atleast one solution, then $(b + a)$ can be equal to
If $(x + 1)$ is a factor of ${x^4} - (p - 3){x^3} - (3p - 5){x^2}$ $ + (2p - 7)x + 6$, then $p = $
If the roots of ${x^2} + x + a = 0$exceed $a$, then
The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be
Let $m$ and $n$ be the numbers of real roots of the quadratic equations $x^2-12 x+[x]+31=0$ and $x ^2-5| x +2|-4=0$ respectively, where $[ x ]$ denotes the greatest integer $\leq x$. Then $m ^2+ mn + n ^2$ is equal to $..............$.