Let $a, b$ be non-zero real numbers. Which of the following statements about the quadratic equation $a x^2+(a+b) x+b=0$ is necessarily true?

$I$. It has at least one negative root.

$II$. It has at least one positive root.

$III$. Both its roots are real.

  • [KVPY 2013]
  • A

    $I$ and $II$ only

  • B

    $I$ and $III$ only

  • C

    $II$ and $III$ only

  • D

    All of them

Similar Questions

If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $

$\{ x \in R:|x - 2|\,\, = {x^2}\} = $

Let $t$ be real number such that $t^2=a t+b$ for some positive integers $a$ and $b$. Then, for any choice of positive integers $a$ and $b, t^3$ is never equal to

  • [KVPY 2016]

Let $\mathrm{S}$ be the set of positive integral values of $a$ for which $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$. Then, the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

If $x,\;y,\;z$ are real and distinct, then $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ is always

  • [IIT 1979]