- Home
- Standard 11
- Mathematics
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:
$11$
$12$
$9$
$10$
Solution
$\sum\limits_{r = 1}^n {(x + r – 1)(x + r) = 10n} $
$\sum\limits_{r = 1}^n {({x^2} + xr + (r – 1)x + {r^2} – r) = 10n} $
$ \Rightarrow \,\sum\limits_{r = 1}^n {({x^2} + (2r – 1)x + r(r – 1) = 10n} $
$\Rightarrow n x^{2}+\{1+3+5+\ldots .+(2 n-1)\} x+\{1.2+2.3+\ldots .+(n-1)n\}$
$=10 n$
$\Rightarrow \mathrm{nx}^{2}+\mathrm{n}^{2} \mathrm{x}+\frac{(\mathrm{n}-1) \mathrm{n}(\mathrm{n}+1)}{3}=10 \mathrm{n}$
$\Rightarrow x^{2}+n x+\frac{n^{2}-31}{3}=0$
Let $\alpha$ and $\alpha+1$ be its two solutions
( $\because$ it has two consequtive integral solutions)
$\Rightarrow \alpha+(\alpha+1)=-n$
$\Rightarrow \alpha=\frac{-n-1}{2}……….(1)$
Also $\alpha(\alpha+1)=\frac{n^{2}-31}{3}……..(2)$
Putting value of $(1)$ in $(2),$ we get
$=\left(\frac{n+1}{2}\right)\left(\frac{1-n}{2}\right)=\frac{n^{2}-31}{3}$
$ \Rightarrow {n^2} = 121$
$ \Rightarrow n = 11$