If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:

  • [JEE MAIN 2017]
  • A

    $11$

  • B

    $12$

  • C

    $9$

  • D

    $10$

Similar Questions

Let $a, b, c, d$ be real numbers between $-5$ and $5$ such that  $|a|=\sqrt{4-\sqrt{5-a}},|b|=\sqrt{4+\sqrt{5-b}},|c|=\sqrt{4-\sqrt{5+c}}$ $|d|=\sqrt{4+\sqrt{5+d}}$ Then, the product $a b c d$ is

  • [KVPY 2017]

Let $A=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ and $B=\{x \geq 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. Then $n(A \cup B)$ is equal to:

  • [JEE MAIN 2025]

The number of real solutions of the equation $x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0$ is

  • [JEE MAIN 2024]

The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is

  • [KVPY 2015]

If$\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$, then

  • [IIT 1987]