If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:

  • [JEE MAIN 2017]
  • A

    $11$

  • B

    $12$

  • C

    $9$

  • D

    $10$

Similar Questions

Let $\alpha ,\beta $ be the roots of ${x^2} + (3 - \lambda )x - \lambda = 0.$ The value of $\lambda $ for which ${\alpha ^2} + {\beta ^2}$ is minimum, is

The complete solution of the inequation ${x^2} - 4x < 12\,{\rm{ is}}$

If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:

  • [JEE MAIN 2021]

Let $a$ , $b$ , $c$ are roots of equation $x^3 + 8x + 1 = 0$ ,then the value of 

 $\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ is equal to

If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ is equal to

  • [JEE MAIN 2019]