If $a,b,c$ are real and ${x^3} - 3{b^2}x + 2{c^3}$ is divisible by $x - a$ and$x - b$, then
$a = - b = - c$
$a = 2b = 2c$
$a = b = c$,$a = - 2b = - 2c$
None of these
lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation
If $a \in R$ and the equation $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ (where $[x]$ denotes the greatest integer $\leq\,x$)has no integral solution ,then all possible values of $a$ lie in the interval
Let $a$ ,$b$, $c$ , $d$ , $e$ be five numbers satisfying the system of equations
$2a + b + c + d + e = 6$
$a + 2b + c + d + e = 12$
$a + b + 2c + d + e = 24$
$a + b + c + 2d + e = 48$
$a + b + c + d + 2e = 96$ ,
then $|c|$ is equal to
The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are
If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ is equal to