If $a,b,c$ are real and ${x^3} - 3{b^2}x + 2{c^3}$ is divisible by $x - a$ and$x - b$, then
$a = - b = - c$
$a = 2b = 2c$
$a = b = c$,$a = - 2b = - 2c$
None of these
If $x$ is a solution of the equation, $\sqrt {2x + 1} - \sqrt {2x - 1} = 1, \left( {x \ge \frac{1}{2}} \right)$ , then $\sqrt {4{x^2} - 1} $ is equal to
The product of all real roots of the equation ${x^2} - |x| - \,6 = 0$ is
The number of solutions for the equation ${x^2} - 5|x| + \,6 = 0$ is
Consider a three-digit number with the following properties:
$I$. If its digits in units place and tens place are interchanged, the number increases by $36$ ;
$II.$ If its digits in units place and hundreds place are interchanged, the number decreases by $198 .$
Now, suppose that the digits in tens place and hundreds place are interchanged. Then, the number
In the equation ${x^3} + 3Hx + G = 0$, if $G$ and $H$ are real and ${G^2} + 4{H^3} > 0,$ then the roots are