Number of natural solutions of the equation $xyz = 2^5 \times 3^2 \times 5^2$ is equal to
$756$
$520$
$720$
$120$
Let $x, y, z$ be non-zero real numbers such that $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ and $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, then $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ is equal to
lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation
How many positive real numbers $x$ satisfy the equation $x^3-3|x|+2=0$ ?
Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is
The solution of the equation $2{x^2} + 3x - 9 \le 0$ is given by