The equation${e^x} - x - 1 = 0$ has
Only one real root $x = 0$
At least two real roots
Exactly two real roots
Infinitely many real roots
In the equation ${x^3} + 3Hx + G = 0$, if $G$ and $H$ are real and ${G^2} + 4{H^3} > 0,$ then the roots are
For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is
If for a posiive integer $n$ , the quadratic equation, $x\left( {x + 1} \right) + \left( {x + 1} \right)\left( {x + 2} \right) + .\;.\;.\; + \left( {x + \overline {n - 1} } \right)\left( {x + n} \right) = 10n$ has two consecutive integral solutions, then $n$ is equal to:
If $\alpha, \beta$ are roots of the equation $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ and $P_{n}=\alpha^{n}-\beta^{n}$ for each positive integer $\mathrm{n}$, then the value of $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ is equal to $....$
The roots of the equation ${x^4} - 2{x^3} + x = 380$ are