यदि $n, 1$ से बड़ा पूर्णांक है, तब  $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $

  • [IIT 1972]
  • A

    $a$

  • B

    $0$

  • C

    ${a^2}$

  • D

    ${2^n}$

Similar Questions

यदि  ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}}$ हो, तब ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}}$ का मान है

  • [IIT 1966]

$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ का मान होगा 

 $^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ का मान है

यदि $\sum_{ r =1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !)$ है, तो $\alpha$ का मान बराबर है ............ |

  • [JEE MAIN 2021]

मान $[ x ]$ महत्तम पूर्णांक $\leq x$ है। यदि $n \in N$ के लिए $,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$ है, तो  $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$  बराबर है 

  • [JEE MAIN 2021]