જો $n$ એ $1$ કરતાં મોટો પૂર્ણાક હોય , તો $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $
$a$
$0$
${a^2}$
${2^n}$
${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$ ના વિસ્તરણમાં એકી ઘાતવાળા તમામ પદોનાં સહગુણકોનો સરવાળો . . . . છે.
જો ${(1 - 3x + 10{x^2})^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $a$ છે અને ${(1 + {x^2})^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $b$ હોય , તો . . . .
જો $^{20}{C_1} + \left( {{2^2}} \right){\,^{20}}{C_3} + \left( {{3^2}} \right){\,^{20}}{C_3} + \left( {{2^2}} \right) + ..... + \left( {{{20}^2}} \right){\,^{20}}{C_{20}} = A\left( {{2^\beta }} \right)$ થાય તો $(A, \beta )$ ની કિમત મેળવો.
$(x-1) (x- 2) (x-3)...............(x-10)$ ના વિસ્તરણમાં $x^8$ નો સહગુણક મેળવો
${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $