If ${a_1},{a_2},{a_3},{a_4}$ are the coefficients of any four consecutive terms in the expansion of ${(1 + x)^n}$, then $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}}$ =
$\frac{{{a_2}}}{{{a_2} + {a_3}}}$
$\frac{1}{2}\frac{{{a_2}}}{{({a_2} + {a_3})}}$
$\frac{{2{a_2}}}{{{a_2} + {a_3}}}$
$\frac{{2{a_3}}}{{{a_2} + {a_3}}}$
$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $
If $r,k,p \in W,$ then $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ is equal to -
The sum of the series $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,{\rm{terms}}} \right)} $ is
If the sum of the coefficients of all the positive powers of $x$, in the binomial expansion of $\left(x^{n}+\frac{2}{x^{5}}\right)^{7}$ is $939 ,$ then the sum of all the possible integral values of $n$ is
${n^n}{\left( {\frac{{n + 1}}{2}} \right)^{2n}}$ is