यदि ${(1 + x)^n}$ के प्रसार में चार क्रमिक पदों के गुणांक ${a_1},{a_2},{a_3},{a_4}$ हैं, तब $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}}$=

  • [IIT 1975]
  • A

    $\frac{{{a_2}}}{{{a_2} + {a_3}}}$

  • B

    $\frac{1}{2}\frac{{{a_2}}}{{({a_2} + {a_3})}}$

  • C

    $\frac{{2{a_2}}}{{{a_2} + {a_3}}}$

  • D

    $\frac{{2{a_3}}}{{{a_2} + {a_3}}}$

Similar Questions

$x$ की घातों में $\left(1+x+x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{4}$ का गुणांक है .............

  • [JEE MAIN 2020]

$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ का मान होगा 

$x \in R , x \neq-1$ के लिए, यदि $(1+x)^{2016}+x(1+x)^{2015}+x^{2}(1+x)^{2014}$ $+\ldots .+x^{2016}=\sum_{i=0}^{2016} a_{i} x^{i}$ है, तो $a_{17}$ बराबर है

 

  • [JEE MAIN 2016]

$(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ में $\mathrm{x}^{301}$ का गुणांक है :

  • [JEE MAIN 2023]

$(1+x)^{n+2}$ के द्विपद प्रसार में तीन क्रमागत पदों के गुणांकों का योगफल, जो $1: 3: 5$ अनुपात में है, होगा

  • [JEE MAIN 2023]