यदि ${(1 + x)^n}$ के प्रसार में चार क्रमिक पदों के गुणांक ${a_1},{a_2},{a_3},{a_4}$ हैं, तब $\frac{{{a_1}}}{{{a_1} + {a_2}}} + \frac{{{a_3}}}{{{a_3} + {a_4}}}$=

  • [IIT 1975]
  • A

    $\frac{{{a_2}}}{{{a_2} + {a_3}}}$

  • B

    $\frac{1}{2}\frac{{{a_2}}}{{({a_2} + {a_3})}}$

  • C

    $\frac{{2{a_2}}}{{{a_2} + {a_3}}}$

  • D

    $\frac{{2{a_3}}}{{{a_2} + {a_3}}}$

Similar Questions

 $^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ का मान है

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$=

यदि ${(1 - 3x + 10{x^2})^n}$ के विस्तार में गुणांकों का योग $a$ तथा ${(1 + {x^2})^n}$ के विस्तार में गुणांकों का योग $b$ हो, तो

यदि ${(x + a)^n},$ के विस्तार में विषम पदों का योग $A$ तथा सम पदों का योग $B$ हो, तो   

यदि $\sum_{ r =1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !)$ है, तो $\alpha$ का मान बराबर है ............ |

  • [JEE MAIN 2021]