If ${C_r}$ stands for $^n{C_r}$, the sum of the given series $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$, Where $n$ is an even positive integer, is

  • [IIT 1986]
  • A

    $0$

  • B

    ${( - 1)^{n/2}}(n + 1)$

  • C

    ${( - 1)^n}(n + 2)$

  • D

    ${( - 1)^{n/2}}(n + 2)$

Similar Questions

If the sum of the coefficients in the expansion of ${(\alpha {x^2} - 2x + 1)^{35}}$ is equal to the sum of the coefficients in the expansion of ${(x - \alpha y)^{35}}$, then $\alpha $=

If for positive integers $r> 1, n > 2$, the coefficients of the $(3r)^{th}$ and $(r + 2)^{th}$ powers of $x$ in the expansion of $( 1 + x)^{2n}$ are equal, then $n$ is equal to 

  • [JEE MAIN 2013]

The coefficient of $x^8$ in the expansion of $(x-1) (x- 2) (x-3)...............(x-10)$ is :

If $(1 + x - 3x^2)^{2145} = a_0 + a_1x + a_2x^2 + .........$ then $a_0 - a_1 + a_2 - a_3 + ..... $ ends with

Let $[ x ]$ denote greatest integer less than or equal to $x .$ If for $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to

  • [JEE MAIN 2021]