7.Binomial Theorem
hard

જો ${C_r}$ એ $^n{C_r}$ દર્શાવે છે તો , $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$ મેળવો. (કે જ્યાં $n$ એ યુગ્મ પુર્ણાક છે )

A

$0$

B

${( - 1)^{n/2}}(n + 1)$

C

${( - 1)^n}(n + 2)$

D

${( - 1)^{n/2}}(n + 2)$

(IIT-1986)

Solution

(d) We have $C_0^2 – 2C_1^2 + 3C_2^2 – ….. + {( – 1)^n}(n + 1)C_n^2$

$ = [C_0^2 – C_1^2 + C_2^2 – …. + {( – 1)^n}C_n^2] – [C_1^2 – 2C_2^2 + 3C_3^2…. – {( – 1)^n}nC_n^2]$

=${( – 1)^{n/2}}\frac{{n!}}{{(n/2)!(n/2)!}} – {( – 1)^{(n/2) – 1}}.\frac{1}{2}n\,{\,^n}{C_{n/2}}$

=${( – 1)^{n/2}}.\frac{{n!}}{{(n/2)!(n/2)!}}.\left( {1 + \frac{n}{2}} \right)$

$\therefore$ the value of the given expression is

$\frac{{2(n/2)\,!\,(n/2)!}}{{n!}} \times {( – 1)^{n/2}}.\frac{{(n)!}}{{(n/2)!(n/2)!}}\left( {1 + \frac{n}{2}} \right)$

$ = {( – 1)^{n/2}}(2 + n)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.