જો ${C_r}$ એ $^n{C_r}$ દર્શાવે છે તો , $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$ મેળવો. (કે જ્યાં $n$ એ યુગ્મ પુર્ણાક છે )

  • [IIT 1986]
  • A

    $0$

  • B

    ${( - 1)^{n/2}}(n + 1)$

  • C

    ${( - 1)^n}(n + 2)$

  • D

    ${( - 1)^{n/2}}(n + 2)$

Similar Questions

જો ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ ના વિસ્તરણમાં પદોની સંખ્યા $28$ છે,તો આ વિસ્તરણમાંના બધાજ પદોના સહગુણકોનો સરવાળો . . . . છે. 

  • [JEE MAIN 2016]

જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, તો ${C_0} + {C_2} + {C_4} + {C_6} + .....$ = . . .

${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$ ના વિસ્તરણમાં ${x^r}[0 \le r \le (n - 1)]$ નો સહગુણક મેળવો.

$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $

$^{4n}{C_0}{ + ^{4n}}{C_4}{ + ^{4n}}{C_8} + ....{ + ^{4n}}{C_{4n}}$ = . . .