3 and 4 .Determinants and Matrices
easy

If $\omega $ is the cube root of unity, then $\left| {\begin{array}{*{20}{c}}1&\omega &{{\omega ^2}}\\\omega &{{\omega ^2}}&1\\{{\omega ^2}}&1&\omega \end{array}} \right|$=

A

$1$

B

$0$

C

$\omega $

D

${\omega ^2}$

Solution

(b) $\left| {\,\begin{array}{*{20}{c}}1&\omega &{{\omega ^2}}\\\omega &{{\omega ^2}}&1\\{{\omega ^2}}&1&\omega \end{array}\,} \right| = \left| {\,\begin{array}{*{20}{c}}{1 + \omega + {\omega ^2}}&\omega &{{\omega ^2}}\\{1 + \omega + {\omega ^2}}&{{\omega ^2}}&1\\{1 + \omega + {\omega ^2}}&1&\omega \end{array}\,} \right|$

$ = \,\left| {\,\begin{array}{*{20}{c}}0&\omega &{{\omega ^2}}\\0&{{\omega ^2}}&1\\0&1&\omega \end{array}\,} \right| = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.