જો $\omega $ એ એકનું કાલ્પનિક બીજ હોય , તો $\left| {\,\begin{array}{*{20}{c}}2&{2\omega }&{ - {\omega ^2}}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $

  • A

    $0$

  • B

    $1$

  • C

    $-1$

  • D

    એકપણ નહી.

Similar Questions

જો $a,b,c$ એ ધન પૂર્ણાંક હોય , તો $\Delta = \left| {\,\begin{array}{*{20}{c}}{{a^2} + x}&{ab}&{ac}\\{ab}&{{b^2} + x}&{bc}\\{ac}&{bc}&{{c^2} + x}\end{array}\,} \right|$ એ . . . વડે વિભાજ્ય છે.

$\left| {\,\begin{array}{*{20}{c}}{a + b}&{a + 2b}&{a + 3b}\\{a + 2b}&{a + 3b}&{a + 4b}\\{a + 4b}&{a + 5b}&{a + 6b}\end{array}\,} \right| = $

  • [IIT 1986]

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$

સાબિત કરો કે $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$

ધારો કે $A$ એ $\operatorname{det}( A )=4$ થાય તેવો $3 \times 3$ શ્રેણિક છે. ધારોકે $R _{ i }$ એ શ્રેણિક $A$ ની $i$ મી હાર દર્શાવે છે. જે $2A$ પર પ્રક્રિયા $R _{2} \rightarrow 2 R _{2}+5 R _{3}$ કરી શ્રેણિક $B$ મેળવવામાં આવે, તો $\operatorname{det}( B ) =.........$.

  • [JEE MAIN 2021]