જો $\Delta = \left| {\,\begin{array}{*{20}{c}}a&b&c\\x&y&z\\p&q&r\end{array}\,} \right|$, તો $\left| {\,\begin{array}{*{20}{c}}{ka}&{kb}&{kc}\\{kx}&{ky}&{kz}\\{kp}&{kq}&{kr}\end{array}\,} \right|$=

  • A
    $\Delta $
  • B
    $k\Delta $
  • C
    $3k\Delta $
  • D
    ${k^3}\Delta $

Similar Questions

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી  સાબિત કરો કે, $\left| {\begin{array}{*{20}{l}}
  {\sin \alpha }&{\cos \alpha }&{\cos (\alpha  + \delta )} \\ 
  {\sin \beta }&{\cos \beta }&{\cos (\beta  + \delta )} \\ 
  {\sin \gamma }&{\cos \gamma }&{\cos (\gamma  + \delta )} 
\end{array}} \right| = 0$

$x$ ની . . . કિમત માટે $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$ થાય.

$\left| {\,\begin{array}{*{20}{c}}1&{1 + ac}&{1 + bc}\\1&{1 + ad}&{1 + bd}\\1&{1 + ae}&{1 + be}\end{array}\,} \right| = $

જો $\mathrm{a, b, c}$ સમાંતર શ્રેણીમાં હોય, તો નિશ્ચાયક $\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$

જો $a,b,c$ એ અસમાન હોય તો $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|= 0$ માટે . . . .શરતનું પાલન થવું જોઈએ.

  • [IIT 1985]