- Home
- Standard 12
- Mathematics
$\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$ નું મૂલ્ય શોધો.
$2$
$-1$
$1$
$0$
Solution
$\Delta=\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$
Expanding along $C_{3},$ we have:
$\Delta=-\sin \alpha\left(-\sin \alpha \sin ^{2} \beta+\cos ^{2} \beta \sin a\right)+\cos \alpha\left(\cos \alpha \cos ^{2} \beta+\cos \alpha \sin ^{2} \beta\right)$
$=\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right)+\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)$
$=\sin ^{2} \alpha(1)+\cos ^{2} \alpha(1)$
$=1$