यदि $\left| {{\kern 1pt} \begin{array}{*{20}{c}}1&2&3\\2&x&3\\3&4&5\end{array}\,} \right| = 0,$ तो $x =$
$-5/2$
$-2/5$
$5/2$
$2/5$
चूंकि $x = \frac{5}{2}$ दिये गये सारणिक को सन्तुष्ट करता है।
सारणिक $\left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right|$ का मान है
यदि $[ x ]$ महत्तम पूर्णांक $\leq x$ है, तो रैखिक समीकरण निकाय $[\sin \theta] x +[-\cos \theta] y =0$ $[\cot \theta] x + y =0$
यदि $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ , तब ${A_1}$ का मान होगा
यदि $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x – 2}\\{2{x^2} + 3x – 1}&{3x}&{3x – 3}\\{{x^2} + 2x + 3}&{2x – 1}&{2x – 1}\end{array}\,} \right| = Ax – 12$, तो $ A$ का मान है
यदि $\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}\,} \right| = 5$; तो $\left| {\,\begin{array}{*{20}{c}}{{b_2}{c_3} – {b_3}{c_2}}&{{c_2}{a_3} – {c_3}{a_2}}&{{a_2}{b_3} – {a_3}{b_2}}\\{{b_3}{c_1} – {b_1}{c_3}}&{{c_3}{a_1} – {c_1}{a_3}}&{{a_3}{b_1} – {a_1}{b_3}}\\{{b_1}{c_2} – {b_2}{c_1}}&{{c_1}{a_2} – {c_2}{a_1}}&{{a_1}{b_2} – {a_2}{b_1}}\end{array}\,} \right|$ का मान है
Confusing about what to choose? Our team will schedule a demo shortly.