Let $a,b,c$ be positive real numbers. The following system of equations in $x, y$  and $ z $ $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$ has

  • [IIT 1995]
  • A

    No solution

  • B

    Unique solution

  • C

    Infinitely many solutions

  • D

    Finitely many solutions

Similar Questions

If $n \ne 3k$ and 1, $\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ has the value

If $D_1$ and $D_2$ are two $3 \times 3$ diagonal matrices, then

If $\left| {\,\begin{array}{*{20}{c}}{1 + ax}&{1 + bx}&{1 + cx}\\{1 + {a_1}x}&{1 + {b_1}x}&{1 + {c_1}x}\\{1 + {a_2}x}&{1 + {b_2}x}&{1 + {c_2}x}\end{array}\,} \right|,$ $ = {A_0} + {A_1}x + {A_2}{x^2} + {A_3}{x^3}$ then ${A_1}$ is equal to

If $a, b, c$ are three complex numbers such that $a^2 + b^2 + c^2 = 0$ and  $\left| {\begin{array}{*{20}{c}}
{\left( {{b^2} + {c^2}} \right)}&{ab}&{ac}\\
{ab}&{\left( {{c^2} + {a^2}} \right)}&{bc}\\
{ac}&{bc}&{\left( {{a^2} + {b^2}} \right)}
\end{array}} \right| = K{a^2}{b^2}{c^2}$ then value of $K$ is

If $\left| {\begin{array}{*{20}{c}}
  {\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\ 
  {{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\ 
  {\cos 4x}&{{{\cos }^2}x}&{\cos 2x} 
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ then $a_0$ is equal to