3 and 4 .Determinants and Matrices
hard

Let $a,b,c$ be positive real numbers. The following system of equations in $x, y$  and $ z $ $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$ has

A

No solution

B

Unique solution

C

Infinitely many solutions

D

Finitely many solutions

(IIT-1995)

Solution

(b) Let $\frac{{{x^2}}}{{{a^2}}} = X,\frac{{{y^2}}}{{{b^2}}} = Y$and $\frac{{{z^2}}}{{{c^2}}} = Z$,

then the given system of equations is $X + Y – Z = 1,$ $X – Y + Z = 1$, $ – X + Y + Z = 1$.

The coefficient matrix is $A = \left[ {\begin{array}{*{20}{c}}1&1&{ – 1}\\1&{ – 1}&1\\{ – 1}&1&1\end{array}} \right]$

Clearly $|A| \ne 0$. So the given system of equations has unique solution.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.