જો $a \ne 6,b,c$ એ $\left| {\,\begin{array}{*{20}{c}}a&{2b}&{2c}\\3&b&c\\4&a&b\end{array}\,} \right| = 0 $ નું સમાધાન કરે છે તો $abc = $
$a + b + c$
$0$
${b^3}$
$ab + bc$
$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $
સુરેખ સમીકરણોની સંહતિ $x+2 y+3 z=1$ ; $3 x+4 y+5 z=\mu$ ; $4 x+4 y+4 z=\delta$ એ સુસંગત ન હોય તો $(\mu, \delta)$ ની કર્મયુક્ત જોડ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$ = . . .
જો $[x]$ એ મહતમ પૃણાંક વિધેય છે , તો રેખીય સમીકરણો $[sin \,\theta ] x + [-cos\,\theta ] y = 0$ ; $[cot \,\theta ] x + y = 0$ માટે . . . .
$l,m,n$ એ ધન સમગુણોતર શ્રેણીના ${p^{th}},{q^{th}}$ અને ${r^{th}}$ ના પદો હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ = . . . .