If $a, b, c$ are real then the value of determinant $\left| {\begin{array}{*{20}{c}} {{a^2} + 1}&{ab}&{ac}\\{ab}&{{b^2} + 1}&{bc}\\{ac}&{bc}&{{c^2} + 1}\end{array}}\right|$ $= 1$ if
$a + b + c = 0$
$a + b + c = 1$
$a + b + c = -1$
$a = b = c = 0$
If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 3}\\{x + 2}&{x + 3}&{x + 4}\\{x + a}&{x + b}&{x + c}\end{array}\,} \right| = 0$, then $a,b,c$ are in
Value of $\left| {\begin{array}{*{20}{c}}
{{{(b + c)}^2}}&{{a^2}}&{{a^2}} \\
{{b^2}}&{{{(a + c)}^2}}&{{b^2}} \\
{{c^2}}&{{c^2}}&{{{(a + b)}^2}}
\end{array}} \right|$ is equal to
The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c - a}&{c + a - b}&{a + b - c}\end{array}\,} \right|$ is
Prove that
$\Delta=\left|\begin{array}{ccc}
a+b x & c+d x & p+q x \\
a x+b & c x+d & p x+q \\
u & v & w
\end{array}\right|=\left(1-x^{2}\right)\left|\begin{array}{lll}
a & c & p \\
b & d & q \\
u & v & m
\end{array}\right|$
If $f(x) = \left| {\begin{array}{*{20}{c}}1&x&{x + 1}\\{2x}&{x(x - 1)}&{(x + 1)x}\\{3x(x - 1)}&{x(x - 1)(x - 2)}&{(x + 1)x(x - 1)}\end{array}} \right|$ then $f(100)$ is equal to