જો $ A, B, C$ એ ત્રિકોણના ખૂણા હોય , તો $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $
$1$
$0$
$\cos A\cos B\cos C$
$\cos A + \cos B\cos C$
જો $0 \leq \theta \leq 2 \pi$ માટે $\mathrm{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$ હોય, તો
જો સમીકરણ સંહતિ $2 x+y+z=5$ ; $x-y+z=3$ ; $x+y+a z=b$ નો ઉકેલગણ ખાલીગણ હોય તો . . .
અહી $A=\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ છે. જો $A ^{2}+\gamma A +18 I = O$ હોય તો $\operatorname{det}( A )$ ની કિમંત મેળવો.
$\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ મેળવો.
જો $a,b,c$ ધન અને અસમાન હોય , તો નિશ્રાયક $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ ની કિમત . . .. .