- Home
- Standard 12
- Mathematics
જો $ A, B, C$ એ ત્રિકોણના ખૂણા હોય , તો $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $
$1$
$0$
$\cos A\cos B\cos C$
$\cos A + \cos B\cos C$
Solution
(b) Given, Angles of a triangle $= A, B$ and $C$. We know that as $A + B + C = \pi $,
therefore $A + B = \pi – C$
or $\cos (A + B) = \cos (\pi – C) = – \cos C$
or $\cos A\cos B – \sin A\sin B = – \cos C$
$\cos A\cos B + \cos C = \sin A\sin B$
and $\sin (A + B) = \sin (\pi – C) = \sin C.$
Expanding the given determinant, we get
$\Delta = – (1 – {\cos ^2}A) + \cos C(\cos C + \cos A\cos B)$
$ + \cos B(\cos B + \cos A\cos C)$
$ = – {\sin ^2}A + \cos C(\sin A\sin B) + \cos B(\sin A\sin C)$
$ = – {\sin ^2}A + \sin A(\sin B\cos C + \cos B\sin C)$
$ = – {\sin ^2}A + \sin A\sin (B + C)$
$ = – {\sin ^2}A + {\sin ^2}A = 0.$