જો $a > 0$ અને વિવેચક $a{x^2} + 2bx + c < 0 $ છે, તો $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ = . . .
ધન
$(ac - {b^2})(a{x^2} + 2bx + c)$
ઋણ
$0$
$a$ અને $b$ ની કઈ કિમંતો માટે આપેલ સમીકરણ સંહતીઓ $2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ નો બીજગણ ખાલી ગણ થાય.
બે પાસાને ઉછાળવામાં આવે છે. તેમની પરના અંકોને $\lambda$ અને $\mu$ લેવામાં આવે છે અને સમીકરણ સંહતિ
$x+y+z=5$ ; $x+2 y+3 z=\mu$ ; $x+3 y+\lambda z=1$
ને બનાવમાં આવે છે.જો $\mathrm{p}$ એ સમીકરણ સંહતિને એકાકી ઉકેલ હોય તેની સંભાવના દર્શાવે છે અને $\mathrm{q}$ એ સમીકરણ સંહતિનો ઉકેલગણ ખાલીગણ છે તેની સંભાવના દર્શાવે છે તો
$k$ ની કઈ કિમંત માટે આપેલ સમીકરણોનો શૂન્યતર ઉકેલ મળે ?
$x + ky + 3z = 0$ ; $3x + ky + 2z = 0$ ; $2x + 3y + 4z = 0$
જો ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,\theta }&{\cos \,\theta } \\
{\sin \,\theta }&{ - x}&1 \\
{\cos \,\theta }&1&x
\end{array}} \right|$ અને ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,2\theta }&{\cos \,\,2\theta } \\
{\sin \,2\theta }&{ - x}&1 \\
{\cos \,\,2\theta }&1&x
\end{array}} \right|$, $x \ne 0$ ;તો દરેક $\theta \in \left( {0,\frac{\pi }{2}} \right)$ માટે . . . .
જો $D = \left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right|$ જયાં $x \ne 0,y \ne 0$ તો $D$ એ . . . . .