यदि $A, B, C$ किसी त्रिभुज के कोण हों, तो $\left| {\,\begin{array}{*{20}{c}}{ - 1}&{\cos C}&{\cos B}\\{\cos C}&{ - 1}&{\cos A}\\{\cos B}&{\cos A}&{ - 1}\end{array}\,} \right| = $

  • A

    $1$

  • B

    $0$

  • C

    $\cos A\cos B\cos C$

  • D

    $\cos A + \cos B\cos C$

Similar Questions

यदि समीकरण निकाय  $2 x+3 y-z=5$  ;  $x+\alpha y+3 z=-4$  ;  $3 x-y+\beta z=7$के अनंत हल हैं तो $13 \alpha \beta$ बराबर है

  • [JEE MAIN 2024]

माना$\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ तथा $|2 \mathrm{~A}|^3=2^{21}$ है, जहाँ $\alpha, \beta \in \mathrm{Z}$ है। तो $\alpha$ का एक मान है

  • [JEE MAIN 2024]

क्रमित युग्म $( a , b )$ जिसके लिये रेखीय समीकरण

निकाय

$3 x -2 y + z = b$

$5 x -8 y +9 z =3$

$2 x + y + az =-1$

का कोई हल नहीं है, होगा:

  • [JEE MAIN 2022]

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$

माना $a _{1}, a _{2}, a _{3}, \ldots, a _{10}$ गुणोत्तर श्रेणी में है जिसमें $i =1,2, \ldots, 10$ के लिये $a _{ i }>0$ है तथा युग्मों $( r , k ), r , k \in N$ (प्राकृत संख्याओं का समुच्चय) का समुच्चय $S$ है जिसके लिये $\left|\begin{array}{lll}\log _{ e } a_{1}^{ r } a _{2}^{ k } & \log _{ e } a _{2}^{ r } a _{3}^{ k } & \log _{ e } a _{3}^{ r } a _{4}^{ k } \\ \log _{ e } a _{4}^{ r } a _{5}^{ k } & \log _{ e } a _{5}^{ r } a _{6}^{ k } & \log _{ e } a _{6}^{ r } a _{7}^{ k } \\ \log _{ e } a _{7}^{ r } a _{8}^{ k } & \log _{ e } a _{8}^{ r } a _{9}^{ k } & \log _{ e } a _{9}^{ r } a _{10}^{ k }\end{array}\right|=0$ है। तब $S$ में अवयवों की संख्या होगी 

  • [JEE MAIN 2019]