$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$ કે જ્યાં $a = i,b = \omega ,c = {\omega ^2}$, તો $\Delta $ મેળવો.
$i$
$ - {\omega ^2}$
$\omega $
$ - i$
જો $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\
{\sin \left( {\alpha + \beta } \right)}&{\sin \left( {\beta + \gamma } \right)}&{\sin \left( {\gamma + \alpha } \right)}
\end{array}} \right|$ અને $f(10) = 10$ તો $f(\pi)$ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{41}&{42}&{43}\\{44}&{45}&{46}\\{47}&{48}&{49}\end{array}\,} \right| = $
જો સુરેખ સમીકરણ સંહતિ $x + ky + 3z = 0;3x + ky - 2z = 0$ ; $2x + 4y - 3z = 0$ ને શૂન્યતેર ઉકેલ $\left( {x,y,z} \right)$ હોય ,તો $\frac{{xz}}{{{y^2}}} = $. . . . .
$\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&2&3\\1&3&6\end{array}\,} \right| \ne . . . .$
જો $x, y, z$ એ સમાંતર શ્રેણીમાં છે કે જેનો સામાન્ય તફાવત $d , x \neq 3 d ,$ આપેલ છે અને શ્રેણિક $\left[\begin{array}{ccc}3 & 4 \sqrt{2} & x \\ 4 & 5 \sqrt{2} & y \\ 5 & k & z\end{array}\right]$ નું મૂલ્ય શૂન્ય છે તો $k ^{2}$ ની કિમંત મેળવો.