If $a, b, c$  are all different and $\left| {\,\begin{array}{*{20}{c}}a&{{a^3}}&{{a^4} - 1}\\b&{{b^3}}&{{b^4} - 1}\\c&{{c^3}}&{{c^4} - 1}\end{array}\,} \right|$ = $0$ , then the value of $abc(ab + bc + ca)$ is

  • A

    $a + b + c$

  • B

    $0$

  • C

    ${a^2} + {b^2} + {c^2}$

  • D

    ${a^2} - {b^2} + {c^2}$

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\1&b&{{b^2}}\\1&c&{{c^2}}\end{array}\,} \right| = $

If $a,b,c$ are unequal what is the condition that the value of the following determinant is zero $\Delta = \left| {\,\begin{array}{*{20}{c}}a&{{a^2}}&{{a^3} + 1}\\b&{{b^2}}&{{b^3} + 1}\\c&{{c^2}}&{{c^3} + 1}\end{array}\,} \right|$

  • [IIT 1985]

Show that $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b c\left(1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a b c+b c+c a+a b$

The solutions of the equation $\left|\begin{array}{ccc}1+\sin ^{2} x & \sin ^{2} x & \sin ^{2} x \\ \cos ^{2} x & 1+\cos ^{2} x & \cos ^{2} x \\ 4 \sin 2 x & 4 \sin 2 x & 1+4 \sin 2 x\end{array}\right|=0,(0< x< \pi), \operatorname{are}$

  • [JEE MAIN 2021]

By using properties of determinants, show that:

$\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$