यदि ${a_1},{a_2},{a_3},........,{a_n},......$ गुणोत्तर श्रेणी में हों और ${a_i} > 0$, ($i$ के प्रत्येक मान के लिये) तब सारणिक $\Delta  = \left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 2}}}&{\log {a_{n + 4}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 8}}}&{\log {a_{n + 10}}}\\{\log {a_{n + 12}}}&{\log {a_{n + 14}}}&{\log {a_{n + 16}}}\end{array}} \right|$ का मान होगा

  • A

    $1$

  • B

    $2$

  • C

    $0$

  • D

    इनमें से कोई नहीं

Similar Questions

माना कि $P=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, जहाँ $\alpha \in R$ है। मान लीजिए कि $Q=\left[q_{i j}\right]$ एक ऐसा आव्यूह (matrix) है कि $P Q=k I$, जहाँ $k \in R , k \neq 0$ और $I$ तीन कोटि (order $3$) का तत्समक आव्यूह (identity matrix) है। यदि $q_{23}=-\frac{k}{8}$ और $\operatorname{det}(Q)=\frac{k^2}{2}$ हो, तब

$(A)$ $\alpha=0, k=8$

$(b)$ $4 \alpha-k+8=0$

$(C)$ $\operatorname{det}(P \operatorname{adj}(Q))=2^9$

$(D)$ $\operatorname{det}(Q \operatorname{adj}(P))=2^{13}$

  • [IIT 2016]

यदि $a \neq 0$ हो तो समीकरण $\left|\begin{array}{ccc}x+a & x & x \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$ को हल कीजिए।

माना कि $z=\frac{-1+\sqrt{3} i}{2}$ है, जहाँ $i=\sqrt{-1}$ और $r, s \in\{1,2,3\}$ हैं। माना कि $P=\left[\begin{array}{cc}(-z)^r & z^{2 s} \\ z^{2 s} & z^r\end{array}\right]$ और $I$ दो कोटि (order $2$) का तत्समक आव्यूह (identity matrix) है। तब वे सभी क्रमित युग्म (ordered pairs) $(r, s)$, जिनके लिए $P^2=-I$ है, की कुल संख्या है

  • [IIT 2016]

बिना प्रसरण किए और सारणिकों के गुणधर्मो का प्रयोग करके सिद्ध कीजिए।

$\left|\begin{array}{lll}b+c & q+r & y+z \\ c+a & r+p & z+x \\ a+b & p+q & x+y\end{array}\right|=2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$