3 and 4 .Determinants and Matrices
hard

यदि $a > 0$ और $a{x^2} + 2bx + c$ का विविक्तिकर ऋणात्मक है, तब $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ का मान होगा

A

धनात्मक

B

$(ac - {b^2})(a{x^2} + 2bx + c)$

C

ऋणात्मक

D

$0$

(AIEEE-2002)

Solution

माना $\Delta  = \,\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$

संक्रिया ${R_3} \to {R_3} – x{R_1} – {R_2}$ के प्रयोग से,

$\Delta  = \,\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\0&0&{ – (a{x^2} + 2bx + c)}\end{array}} \right|\,$

$\Delta  = ({b^2} – ac)\,(a{x^2} + 2bx + c)$ 

अब, ${b^2} – ac < 0$ तथा $a > 0$

==>$a{x^2} + 2bx + c$ का विविक्तकर ऋणात्मक है तथा $a > 0$

==>$(a{x^2} + 2bx + c) > 0$, $x \in R$ के सभी मानों के लिये

==>$\Delta  = ({b^2} – ac)\,(a{x^2} + 2bx + c) < 0$, अर्थात् ऋणात्मक।

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.