3 and 4 .Determinants and Matrices
easy

यदि $A = \left[ {\begin{array}{*{20}{c}}3&1\\{ - 1}&2\end{array}} \right]$, तो ${A^2} = $

A

$\left[ {\begin{array}{*{20}{c}}8&{ - 5}\\{ - 5}&3\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}8&{ - 5}\\5&3\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}8&{ - 5}\\{ - 5}&{ - 3}\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}8&5\\{ - 5}&3\end{array}} \right]$

Solution

(d) $A = \left[ {\begin{array}{*{20}{c}}3&1\\{ – 1}&2\end{array}} \right]$

${A^2} = A.A = \left[ {\begin{array}{*{20}{c}}3&1\\{ – 1}&2\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}3&1\\{ – 1}&2\end{array}} \right]$

${A^2} = \left[ {\begin{array}{*{20}{c}}8&5\\{ – 5}&3\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.