3 and 4 .Determinants and Matrices
easy

यदि $A = [1\,2\,3],B = \left[ \begin{array}{l}2\\3\\4\end{array} \right]$ और $C = \left[ {\begin{array}{*{20}{c}}1&5\\0&2\end{array}} \right]$, तब निम्न में कौेन सा  परिभाषित होगा

A

$AC$

B

$BA$

C

$(AB)\,{\rm{. }}C$

D

$(AC)\,.\,B$

Solution

$BA = {\left[ \begin{array}{l}2\\3\\4\end{array} \right]_{3 \times 1}}\,{[1\,\,2\,\,3]_{1 \times 3}}$$ = {\left[ {\begin{array}{*{20}{c}}2&4&6\\3&6&9\\4&8&{12}\end{array}} \right]_{3 \times 3}}$     

 $AB = {[1\,2\,3]_{1 \times 3}}{\left[ \begin{array}{l}2\\3\\4\end{array} \right]_{3 \times 1}} = {[20]_{1 \times 1}}$.

इसलिए  $AB$ तथा $BA$ परिभाषित है।.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.