3 and 4 .Determinants and Matrices
easy

જો $R(t) = \left[ {\begin{array}{*{20}{c}}{\cos t}&{\sin t}\\{ - \sin t}&{\cos t}\end{array}} \right],$ તો $R(s).\,R(t) = $

A

$R(s) + R(t)$

B

$R\,(st)$

C

$R(s + t)$

D

એકપણ નહી.

Solution

(c) $R(s)\,R(t) = \left[ {\begin{array}{*{20}{c}}{\cos s}&{\sin s}\\{ – \sin s}&{\cos s}\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}{\cos t}&{\sin t}\\{ – \sin t}&{\cos t}\end{array}} \right]$

= $\left[ {\begin{array}{*{20}{c}}{\cos (s + t)}&{\sin (t + s)}\\{ – \sin (s + t)}&{\cos (t + s)}\end{array}} \right] = R(s + t)$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.