3 and 4 .Determinants and Matrices
normal

If $A$  is a skew symmetric matrix and  $n $ is a positive integer, then ${A^n}$ is

A

A symmetric matrix

B

Skew-symmetric matrix

C

Diagonal matrix

D

None of these

Solution

(d) Since  $ A$ is a skew-symmetric matrix, therefore

${A^T} = – A \Rightarrow {({A^T})^n} = {( – A)^n}$

$ \Rightarrow $${({A^n})^T} = \left\{ \begin{array}{l}{A^n}{\rm{, if }}n\,{\rm{is even}}\\ – {A^n}{\rm{, if }}n{\rm{ is odd}}\end{array} \right.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.