- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $A$ is a skew symmetric matrix and $n $ is a positive integer, then ${A^n}$ is
A
A symmetric matrix
B
Skew-symmetric matrix
C
Diagonal matrix
D
None of these
Solution
(d) Since $ A$ is a skew-symmetric matrix, therefore
${A^T} = – A \Rightarrow {({A^T})^n} = {( – A)^n}$
$ \Rightarrow $${({A^n})^T} = \left\{ \begin{array}{l}{A^n}{\rm{, if }}n\,{\rm{is even}}\\ – {A^n}{\rm{, if }}n{\rm{ is odd}}\end{array} \right.$
Standard 12
Mathematics