જો ${A_i} = \left[ {\begin{array}{*{20}{c}}{{a^i}}&{{b^i}}\\{{b^i}}&{{a^i}}\end{array}} \right]$ અને $|a|\, < 1,\,|b|\, < 1$, તો $\sum\limits_{i = 1}^\infty {\det ({A_i})} $= . . .
$\frac{{{a^2}}}{{{{(1 - a)}^2}}} - \frac{{{b^2}}}{{{{(1 - b)}^2}}}$
$\frac{{{a^2} - {b^2}}}{{(1 - {a^2})(1 - {b^2})}}$
$\frac{{{a^2}}}{{{{(1 - a)}^2}}} + \frac{{{b^2}}}{{{{(1 - b)}^2}}}$
$\frac{{{a^2}}}{{{{(1 + a)}^2}}} - \frac{{{b^2}}}{{{{(1 + b)}^2}}}$
ધારોકે $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$. જો કોઈ $x, y, z \in \mathbb{R} x y z \neq 0$
માટે $x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$ હોય, તો $6 \alpha+4 \beta+\gamma=$..............
જો $a$, $b$, $c$, $d$, $e$, $f$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{d^2}}&x \\
{{b^2}}&{{e^2}}&y \\
{{c^2}}&{{f^2}}&z
\end{array}} \right|$ એ . . . . પર આધારિત હોય.
કિમત મેળવો : $\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
$\left| {\,\begin{array}{*{20}{c}}{4 + {x^2}}&{ - 6}&{ - 2}\\{ - 6}&{9 + {x^2}}&3\\{ - 2}&3&{1 + {x^2}}\end{array}\,} \right|$ એ.. .. વડે વિભાજ્ય નથી.
$\left| {\,\begin{array}{*{20}{c}}{19}&{17}&{15}\\9&8&7\\1&1&1\end{array}\,} \right| = $