જો સમીકરણો $ax^2 + bx + c = 0$ અને $px^2 + qx + r = 0$, ના બીજ અનુક્રમે $\alpha_1, \alpha_2$ અને $\beta_1, \beta_2$ હોય, તો સમીકરણોની પદ્ધતિ (Syteam of Linear Equatioin ) $\alpha_1y + \alpha_2z = 0$ અને $\beta_1y + \beta_2z = 0$ શૂન્યેતર ઉકેલ ધરાવે તો શું થાય ?
$p^2br = a^2qc$
$b^2pr = q^2ac$
$r^2pb = c^2ar$
આપેલ પૈકી એકપણ નહિ.
જે સમીકરણ સંહતિ
$ 11 x+y+\lambda z=-5 $
$ 2 x+3 y+5 z=3 $
$ 8 x-19 y-39 z=\mu$
ને અસંખ્ય ઉકેલો હોય, તો $\lambda^4-\mu=$.............
જો સમીકરણ સંહતિ $2 x+y-z=3$ ; $x-y-z=\alpha$ ; $3 x+3 y+\beta z=3$ ના ઉકેલની સંખ્યા અનંત છે તો $\alpha+\beta-\alpha \beta$ ની કિમંત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
જો સુરેખ સમીકરણો $kx + y + z =1$ $x + ky + z = k$ અને $x + y + zk = k ^{2}$ એ એકપણ ઉકેલ નો ધરાવે તો $k$ ની કિમંત મેળવો.
સુરેખ સમીકરણોની સંહતિ $\lambda x+2 y+2 z=5$ ; $2 \lambda x+3 y+5 z=8$ ; $4 x+\lambda y+6 z=10$ ને . . . .